NASA develops new design process for future spacecraft

Building the next Starship Enterprise may have just gotten a little simpler. NASA has announced what it says is an efficient, timely, revolutionary process that may help design the next generation of space vehicles. Engineers at NASA Ames Research Center in California’s Silicon Valley, in collaboration with astronauts from NASA Johnson Space Center, Houston, are using the Virtual Flight Rapid Integration Test Environment (VF-RITE) to develop and evaluate vehicle designs that may eventually ferry astronauts to and from the International Space Station. The new process quickly and efficiently incorporates virtual test-flight data into the design process, creating a continuous dialog between test pilots and vehicle designers.

Featherweight Jupiter Moon Is Likely a Jumble of Pieces

NASA’s Galileo spacecraft continues to deliver surprises with the discovery that Jupiter’s potato-shaped inner moon, named Amalthea, appears to have a very low density, indicating it is full of holes. “The density is unexpectedly low,” said Dr. John D. Anderson, an astronomer at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Amalthea is apparently a loosely packed pile of rubble.” The empty gaps between solid chunks likely take up more of the moon’s total volume than the solid pieces, and even the chunks are probably material that is not dense enough to fit some theories about the origin of Jupiter’s moons. “Amalthea now seems more likely to be mostly rock with maybe a little ice, rather than a denser mix of rock and iron,” said JPL’s Dr. Torrence Johnson, project scientist for Galileo.

French use robot arm to remotely diagnose patient at sea

French researchers say they have for the first time demonstrated the use of a teleoperated robotic arm for echographic diagnosis in a remote situation. The objective of the project was to demonstrate how teleoperated echographic diagnosis can be carried out on patients at remote locations. A radiologist at St Anne’s Hospital in Toulon used the teleoperated robotic arm to diagnose a test patient on board the ship stationed at sea. With the robotic arm, videoconferencing equipment and satellite communications, the radiologist was able to assess the severity of medical problems from the remote site. This has important implications for spaceflight and research as it means that astronauts on board the international space station can receive diagnostic attention without returning to Earth.

NASA Research Offers Explanation for Earth’s Bulging Waistline

A team of researchers from NASA’s Jet Propulsion Laboratory, Pasadena, Calif., and the Royal Observatory of Belgium has apparently solved a recently observed mystery regarding changes to the physical shape of Earth and its gravity field. The answer, they found, appears to lie in the melting of sub-polar glaciers and mass shifts in the Southern, Pacific and Indian Oceans associated with global-scale climate changes.

Disappearing Neutrinos Support the Case for Neutrino Mass

Results from the first six months of experiments at KamLAND, an underground neutrino detector in central Japan, show that anti-neutrinos emanating from nearby nuclear reactors are “disappearing,” which indicates they have mass and can oscillate or change from one type to another. As anti-neutrinos are the anti-matter counterpart to neutrinos, these results provide independent confirmation of earlier studies involving solar neutrinos and show that the Standard Model of Particle Physics, which has successfully explained fundamental physics since the 1970’s, is in need of updating. The results also point the way to the first direct measurements of the total radioactivity of the earth.

NASA to showcase innovative research for treating blindness

A technology designed to restore vision in patients suffering from age-related blindness will be demonstrated by a scientist at NASA Ames Research Center in California’s Silicon Valley today. Developed by NASA Ames in conjunction with the Stanford University School of Medicine, the “Vision Chip” may help improve age-related macular degeneration, the number one cause of blindness in the elderly. “Nanotechnology that could restore vision is an exciting example of how NASA science and engineering, origially intended for outer space, can return enormous dividends for everyday life here on Earth,” said Dr. David J. Loftus, a member of both the Life Sciences Division and the Integrated Product Team on Devices and Nanotechnology at NASA Ames.

Researchers decipher optical spectra of carbon nanotubes

Building upon this summer’s groundbreaking finding that carbon nanotubes are fluorescent, chemists at Rice University have precisely identified the optical signatures of 33 “species” of nanotubes, establishing a new methodology for assaying nanotubes that is simpler and faster than existing methods. In research published this week by Science magazine, a spectroscopy research team led by Rice Chemistry Professor R. Bruce Weisman detailed the wavelengths of light that are absorbed and emitted by each type of light-emitting nanotube. The findings hold great promise for chemists, physicists and materials scientists studying nanotubes, because it otherwise takes many hours of tedious testing for researchers to assay a single sample of nanotubes, and optical tests could be much faster and simpler.

‘Hormonal’ software could help satellite self-assemble in space

A unique design for self-organizing robots controlled by “hormonal” software is moving toward space. At the Robosphere 2002 conference held at the NASA Ames Research Center in Silicon Valley November 14-15, Wei-Min Shen of the USC School of Engineering’s Information Sciences Institute (ISI) presented an overview of an audacious project to have pieces of the proposed half-mile-long Space Solar Power System satellite put themselves together–self-assemble–without the help of astronauts.

Hubble helps measure massive extrasolar planet

NASA Hubble Space Telescope’s crisp view has allowed an international team of astronomers to apply a previously unproven technique (astrometry) for making a precise measurement of the mass of a planet outside our solar system. The Hubble results place the planet at 1.89 to 2.4 times the mass of Jupiter, our solar system’s largest world. Previous estimates, about which there are some uncertainties, place the planet’s mass between 1.9 and 100 times that of Jupiter.

Dark Edge of Sunspots Reveal Magnetic Melee

In what may be one of the most important steps in understanding sunspots since they were discovered by Chinese sky watchers more than two millennia ago, researchers have discovered that the lines of magnetic force that surge out of sunspots appear to peel apart like husk off an ear of corn as some of the lines are dragged back beneath the surface by a sort of solar quicksand. This “quicksand” and the magnetic fields it bends create the penumbrae around some sunspots, the strange rings of mid-darkness that have eluded explanation by astronomers since Galileo first sketched them. With the help of sophisticated computer models and data from solar telescopes that give spectacular views of the sun, researchers at the University of Rochester, University of Colorado, University of Cambridge, and University of Leeds have reported an answer to several mysteries of sunspots in the current issue of Nature.

Novel Method for Assembly of Nanoparticles

New York engineers have developed a novel method for assembling nanoparticles into three-dimensional structures that one day may be used to produce new nanoscale tools and machines. The work could be an important step in fulfilling the immense potential of nanotechnology because it gives scientists and engineers improved control and flexibility in the creation of materials for the manufacture of many nanoscale devices. The researchers used non-uniform AC electric fields generated by microfabricated electrodes — which create a motion known as dielectrophoresis — to stack latex, silica or graphite microparticles into two- and three-dimensional structures of prescribed lengths and composition, held together by the electrical field.

Scientists Grow Nano Blood Vessels

Traditional heart bypass surgeries require using veins from the leg to replace damaged blood vessels. Using a nanotechnology developed by Virginia Commonwealth University researchers, doctors soon could be using artificial blood vessels grown in a laboratory to help save half a million lives every year. The new technology produces a natural human blood vessel grown around a scaffold, or tube, made of collagen. Using a process called electrospinning, VCU scientists are making tubes as small as one millimeter in diameter. That’s more than four times smaller than the width of a drinking straw and six times smaller than the smallest commercially available vascular graft.